344 [M]⁺, 346 [M+2]⁺,and 348 [M+4]⁺ (compound 7) were present. During removal of the solvent the organic compounds were resinified, and only the signal at δ 219.32 (PCl₃) was present in the ³¹P NMR spectrum of the distillate.

References

A. A. Kutyrev, V. V. Biryukov, I. F. Litvinov, O. N. Kataeva, R. Z. Musin, K. M. Enikeyev, V. A. Naumov, A. V. Ilyasov, and V. V. Moskva, *Tetrahedron*, 1990, 4333.

Received May 12, 1993; in revised form November 2, 1994

3-Aza-Cope rearrangement as a route to higher branched aliphatic aldehydes from telomers of isoprene with secondary amines

L. I. Zakharkin* and V. V. Guseva

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation. Fax: +7 (095) 135 5085

Higher branched aliphatic aldehydes and the C_8-C_{14} alcohols derived from them are valuable fragrant substances. In order to synthesize such aldehydes we used the 3-aza-Cope rearrangement of telomers of

isoprene with secondary amines, which can be easily prepared on palladium,² nickel,³ or lithium⁴ catalysts. The reaction of allyl bromide with *N*,*N*-diethylnerylamine (1), synthesized from isoprene and diethylamine on a

lithium catalyst, 4 affords tertiary salt 2; the allyl group of the latter isomerizes to the propenyl group when treated with aqueous or alcoholic alkali. The obtained quaternary (*N*-allyl)enamine base 3 undergoes the 3-aza-Cope rearrangement when heated; the subsequent hydrolysis of the imine that forms gives 2,3,6-trimethyl-3-vinylocten-6-al (4).

Aldehyde 4: b.p. 98-100 °C (8 Torr), n_D^{20} 1.4712; the corresponding 2,4-dinitrophenylhydrazone: m.p. 65-66 °C. IR, v/cm^{-1} : 1725 (CHO). An aldehyde with the same skeleton was obtained from N,N-diethylgeranylamine. To confirm the structure of compound 4, the quaternary salt of citronellaldiethylallylenamine (6) isomeric to salt 3 was obtained from citronellal-(E)-diethylenamine⁵ (5) and allyl bromide; this salt was transformed to 2-allyl-3,7-dimethylocten-6-al (7) which is different from aldehyde 4, via the 3-aza-Cope rearrangement.

Aldehyde 7: b.p. 101-103 °C (8 Torr), n_D^{20} 1.4705; the corresponding 2,4-dinitrophenylhydrazone: m.p. 70-71 °C. IR, v/cm^{-1} : 1725 (CHO).

Analogously, 2,7-dimethyl-3-isopropenylocten-7-al (9) was prepared from N,N-dialkyl-2,7-dimethyloctadien-2,7-ylamine (8) (the telomer of isoprene with dialkylamines formed on complex palladium catalysts 2,6).

Aldehyde 9: b.p. 112—114 C (13 Torr), n_D^{20} 1.4652; the corresponding 2,4-dinitrophenylhydrazone: m.p. 60—61 °C. IR, v/cm^{-1} : 1725 (CHO).

Using the same route, 2-methylene-3-isopropenyl-7-methylocten-7-al (11) was prepared from compound 8 and propargyl bromide *via* quaternary salt 10.

Aldehyde 11: b.p. 101-103 °C (10 Torr), n_D^{20} 1.4770; the corresponding 2,4-dinitrophenylhydrazone: m.p. 94—95 °C. IR, v/cm^{-1} : 1700 (CHO).

2,3,7-Trimethyl-2-ethyloctanol (b.p. 132–134 °C (12 Torr), $n_{\rm D}^{20}$ 1.4601) and 2,7-dimethyl-3-isopropyloctanol (b.p. 137–138 °C (12 Torr), $n_{\rm D}^{20}$ 1.4590) were obtained by hydrogenation of compounds **4** and **9**, respectively, over Raney nickel. All of the described compounds were prepared in 60–65 % yields. The use of different allyl- and propargyl halides in the reaction with telomers of isoprene with dialkylamines allows one to synthesize branched aliphatic aldehydes, alcohols, and acids *via* the 3-aza-Cope rearrangement.⁷

References

1. W. R. Gramlich and H. Siegel, *Liebigs Ann. Chem.*, 1988, 487.

- L. I. Zakharkin, E. A. Petrushkina, and L. S. Podvisotskaya, Izv. Akad. Nauk USSR, Ser. Khim., 1983, 886 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1983, 32, 805 (Engl. Transl.)].
- K. Baker, A. H. Cook, D. E. Halliday, and N. T. Smith, J. Chem. Soc., Perkin Trans. 2, 1974, 1511.
- 4. K. Takabe, T. Katagiri, and J. Tanaka, Chem. Lett., 1975, 1031.
- K. Tani, J. S. Akutagawa, K. T. Taketomi, T. Jamagata, H. Kumobayashi, H. Takaya, A. Miyashita, R. Noyori, and S. Otsuka, J. Am. Chem. Soc., 1984, 106, 5208.
- W. Keim, K. Kurtz, and M. Roper, J. Mol. Catal., 1983, 20, 129.
- 7. S. J. Rhoads and N. R. Raulins, in *Organic Reactions*, Wiley, New York, 1974, 22, 42.

Received November 2, 1994; in revised form November 18, 1994